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Mathematics has long been understood to be a “gatekeeper,” which functions to restrict access to 
educational opportunities due to (a) its central role in formal educational sequences, and (b) the 
high failure rates often observed in mathematics courses. Failing is an encounter with a type of 
border: a border that divides a continuous scale into two categories, passing and failing. Typically, 
this border is understood as restrictive. We present a more nuanced view of the role of borders in 
mathematics education. In particular, we argue for a view of borders as fundamentally productive 
objects, and suggest that analytical attention should be focused on who or what gets produced, 
rather than on who or what gets restricted.  
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Mathematics occupies an interesting position in engineering education. On the one hand, the 
calculus sequence occupies a central role in the curriculum. On the other hand, the calculus sequence 
is widely recognized by students, faculty, and researchers as a “gatekeeper,” which often functions to 
push students out of engineering. The gatekeeping role has been ascribed to the calculus sequence 
due to (a) its centrality in engineering curricula, and (b) the astonishingly high rates at which students 
fail calculus courses (Seymour & Hewitt, 2000). In this paper, we examine the centrality of 
mathematics in the engineering curriculum, and we analyze what happens when students fail. This is, 
by now, well-worn territory. However, our analysis offers new insight into this process.  

Failing is an encounter with a type of border: a border that divides a continuous scale into two 
categories, passing and failing. Typically, this border is understood as restrictive, in that it is used to 
restrict access to future course work. From this perspective, the work summarized above can be 
understood as attempts to document the restrictive nature of the border, and to help more students 
land on the passing side of it. We do not disagree with these efforts. Our goal with this paper, 
however, is to present a more nuanced view of the role of borders in mathematics education. In 
particular, we argue for a view of borders as fundamentally productive objects, and suggest that 
analytical attention should be focused on who or what gets produced, rather than on who or what gets 
restricted.  

Theoretical framework 
We take a critical, situated perspective on learning, in which learning is understood as an 

ontogenetic process of becoming a member of a community of practice. Traditionally, such analyses 
focus on how both people and communities of practice are produced and re-produced through 
collective, often asymmetric, participation in cultural practices. In this perspective, trajectories of 
membership are often invoked to describe a person’s “changing participation in changing practices” 
(Lave, 1996, p. 150), and such trajectories are analyzed to document the ways in which participants 
are produced as new kinds of people (e.g., Nasir & Cooks, 2009). We adopt a similar focus, but 
augment it by considering also the role of objects— that is, “stuff and things, tools, artifacts and 
techniques, and ideas, stories, and memories […] that are treated as consequential by community 
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members” (Bowker & Star, 1999, p. 298)—in the production of persons and communities of practice.  
We draw on two key theoretical constructs to examine the relationship between objects and 

participation in the production of people and communities of practice. Trajectories of membership 
(Bowker & Star, 1999; Lave & Wenger, 1991) describe the adoption of and conferral of practice-
based identities upon newcomers. Trajectories of naturalization (Bowker & Star, 1999) describe the 
ways in which objects—including categories and categorization systems and their attendant 
borders—enter into and become naturalized within a community of practice.  

Such a dual focus is crucial in understanding membership because the naturalization of objects is 
the process through which norms and values become embodied in practices of everyday life. In this 
perspective, interactions among people are always mediated by objects, because it is through objects 
of various kinds that people become seen as a certain type of people: 

The relationship of the newcomer to the community largely revolves around the nature of the 
relationship with the objects and not, counterintuitively, directly with the people.  This sort of 
directness only exists hypothetically—there is always mediation by some sort of 
object.  Acceptance or legitimacy derives from the familiarity of action mediated by member 
objects (Bowker & Star, 1999, p. 299). 

Research method and context 
Our research focuses on the experiences of students in a diversity program in the engineering 

school at State U, a flagship state university in the Western United States. To capture student 
experiences and the ways in which those experiences were organized within this community of 
practice, we conducted field-based ethnographic work centered on students, faculty, and staff in the 
program. We used a variety of fieldwork methods including ethnographic observations of routine 
activities, ethnographic interviews, and focus groups. Our data include fieldnotes, meeting minutes, 
and video and audio recordings. Our analysis involved concurrent engagement in data collection and 
data analysis, using Constant Comparative Analysis (Glaser & Strauss, 1967). We analyzed data 
from initial fieldwork early in the research process, leading to a preliminary “grounded theory,” 
which led in turn to further fieldwork to refine the theory, and so on through multiple iterative cycles. 

The engineering school at State U is predominantly composed of white, male, middle- and upper-
class students. Access is a program that seeks to broaden access to the college by admitting a cohort 
of approximately 30 “next-tier” students to the college each year. Students in the Access cohorts 
were initially denied admission to the engineering school, but were accepted via the Access program 
after a second round of admission screening. The Access program has explicit diversity goals, and is 
composed almost entirely of women, students of color, and first-generation college students. 
Although these students are admitted directly to the engineering school, they are enrolled in a 
“performance-enhancing year,” in which they take remedial courses to prepare for courses in the 
engineering school.   

Our initial field work pointed to the centrality of Calculus in the organization of the experience of 
Access students. Calculus is a naturalized, taken-for-granted object within the community of practice. 
How did this come to be, and how does calculus organize the trajectories of membership for 
students? In the sections below, we document the trajectory through which calculus came to be a 
naturalized part of engineering education, and we describe how one Access student’s trajectory of 
membership into engineering school became torqued by this trajectory of naturalization.  
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Trajectory of naturalization: Mathematics as a naturalized object in the engineering 
curriculum 

In the late 19th century, an American engineer beginning his career (in reality, it was almost 
always “his” career) likely would have started on the shop floor and learned his craft through a 
practice-based apprenticeship. In those days, engineering was a craft, practiced by masters who relied 
on “design experience and rules of thumb” (Seely, 1999, p. 289). By 1965, aspiring engineers would 
experience something very different. Instead of a shop floor, they were likely to find themselves 
sitting at a desk in a classroom at a four-year university. Gone was the practice-based apprenticeship, 
replaced by a curriculum based in theory (viz. math and science). Gone too was the image of an 
engineer as a craftsman, replaced by an image of the engineer as a rational technicist. As Seely 
(1999) traces, over the course of 80 years, mathematics became naturalized in engineering education. 

Three broad trends propelled mathematics along its trajectory of naturalization in engineering 
education. First was the emergence in the U.S. of new technologies such as electricity that appeared 
to defy the commonsense rules of thumb that had previously guided engineering design. Second, the 
expansion of land grant colleges, along with an emerging belief in the power of math and science to 
make the world better, began a general trend to push professional preparation out of apprenticeships 
and into universities. Even so, university engineering programs at the start of the 20th century were 
dominated by practical concerns. While these programs involved some math and science, the 
curriculum remained grounded in practice, and students spent a good deal of time in machine shops 
and at drafting tables (Reynolds, 1992; Seely, 2005). Finally, an influx of European engineers—who 
were trained in physics and mathematics, and who approached engineering problems as applied 
exercises in these disciplines—into the U.S. occurred during the early part of the 20th century.  

Concerned by what they perceived as American engineers’ poor technical training, European 
engineers turned their sights to education. Here the trajectories of European engineers became 
coordinated with those of U.S. students. Students were entering universities to learn engineering, and 
European engineers were entering universities to teach it. Guided by a belief that engineering was a 
technical discipline resting on a foundation of basic mathematics and science, European approaches 
to engineering began to transform engineering education at the same time as the rise of the rational 
thinker in the American imagination (Seely, 1999). 

The transformation of engineering education was not a smooth one, however, and debates over 
the nature of engineering and engineering education were “loud and prolonged” (Seely, 2005, p. 
116). While this debate took place largely on university campuses, it can be read as a struggle over 
the nature of engineering itself, as a practice-based trade or as a theory-based profession. Geopolitics 
entered this debate in the form of the Second World War. Pre-war, engineering faculty were 
primarily occupied with teaching. Research was rare, and what research was conducted was small-
scale, practical research driven by the needs of local industry. During and post-war, the Department 
of Defense, which was determined to maintain an arsenal of cutting-edge vehicles and weaponry, 
demanded basic research into explosives, propulsion systems, and materials. Engineering faculty 
were determined that they, rather than researchers in the basic sciences, should get this funding and 
its associated prestige. Soon basic research was woven into the fabric of engineering schools, and 
curricula were twisted to match the demands of the research. Machine shops were replaced with 
classrooms, drafting tables with desks, and practical experience with math and science. By 1965, 
mathematics and science were fully naturalized objects of the engineering curriculum (Seely, 1999, 
2005). 

Today, mathematics is a naturalized, taken for granted part of the infrastructure of the 
engineering school at State U, encoded into such objects as curriculum flowcharts, shown in Figure 
1. One way to see this naturalization is to examine the role of math courses on the one hand, and 
projects courses on the other. First, notice the centrality of math courses. This can be seen by 
examining the dependency trees for courses with pre-requisites. All of these dependency trees 
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include math. Now, compare this with the two “projects courses” that are part of the first and fourth 
year. As shown, these courses are widely separated and generally disconnected from the rest of the 
curriculum. Within math and science courses, the course called “Calculus 1 for Engineers” stands 
out. This is arguably the most important course in the flowchart, as it is part of every dependency 
tree, and it is the only course for which this is true. Furthermore, it is the first course in each of these 
dependency trees. In other words, the first step to accessing any course with a pre-requisite is passing 
Calculus 1. 

 

 
Figure 1. Engineering curriculum flowchart at State U. Course numbers are blurred to preserve 

anonymity. Numbered rows indicate academic semesters. 

Notice the logic inscribed in this object, and the role of borders in producing and maintaining this 
logic. The rows of the flowchart segment time into semesters. The rectangles segment content into 
courses, with borders that bound both time and content. The borders between courses can only be 
breached in a particular sequence, signified on the flowchart with arrows. Taken together the 
flowchart inscribes a logic of learning as a linear process that occurs within bordered units of content 
and time.  

Moreover, the flowchart necessitates a set of institutional practices for producing and policing 
borders. Chief among these “border-policing practices” are testing and grading, as these are the 
practices through which students are classified into courses, that move students from course to 
course. In overview: tests are composed of problems; students provide solutions to these problems by 
making inscriptions—a process through which students translate some piece of themselves into 
marks on paper; and these inscriptions are mobilized into a separate room where instructors translate 
them into scores—a different set of marks on paper. These scores are then aggregated and translated 
into a grade, yet another mark on paper. Final grades, then, are produced via a cascade of 
inscriptions. Students produce inscriptions in response to test problems, these inscriptions are 
assembled and translated into a numerical score, and these numerical scores are assembled and 
translated into a final grade.  

These grades serve as the mechanism by which the institution polices the borders inscribed in the 
flowchart. Depending on the grade a student receives, she is either granted or denied passage through 
the flowchart. Passage from one course to the next is binary—the border either opens or it doesn’t—
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and this gives certain categories heightened importance. For Access students, the category that 
determines passage into the next math class is a B-.  

In addition to doing institutional work, the flow chart also serves as a resources for students to 
locate and construct themselves in relation to the institution (Nespor, 2007). The flowchart translates 
time (measured in semesters) to space, and produces a standardized “path” onto which students 
reckon themselves in spatial terms. For example, students talk about being “ahead” or “behind.” 
These reckonings are value-laden; it is much better to be “ahead” than “behind,” and being “behind” 
brings with it costs in terms of money, time, and status. Thus the borders of the flowchart don’t just 
serve to segment content and time, they also serve to produce students’ institutional identities. As 
such, the borders do both institutional and identity work, as we highlight in the case below.  

Trajectory of membership: Mary 
Mary is a white female student whose experience in the Access program has been shaped by 

mathematics and its associated boundary-policing practices. She came into the program having taken 
calculus in high school, and expected that she would take calculus during her first semester. She 
never had the option. In order to understand why, we have to examine the history of the Access 
program, and its relationship to calculus. 

The Access program has enrolled six cohorts of students. From the beginning, the program has 
faced opposition from some faculty in the school of engineering, who see the program as a sign that 
the school is “lowering standards.” This opposition became especially salient for Professor Turner, 
the director of the Access program, in the program’s third year when it became clear that students in 
the Access program were not passing Calculus at a rate commiserate with the rest of the school of 
engineering. In a focus group she explained, “when we saw our kids failing [Calculus], were like, ‘oh 
crap, we’re about to lose this program.’” Professor Turner recognized that at State U, calculus 
doesn’t just legitimize students, it legitimizes programs.  

Calculus I for Engineers at State U has a 30% failure rate, and, because it’s so central in the 
flowchart, this leads to attrition in the engineering school. Still, it’s largely untouchable. From 
Professor Turner’s perspective, “changing calculus is like moving an elephant—a mountain.” So 
rather than change calculus, the Access program changed their remedial sequence. They worked with 
the math department to create a new Pre-calculus course with the explicit goal of making Access 
students “calculus ready.” Because passing calculus is so important for engineering students (and the 
programs they populate), Professor Turner decided to enroll all of the students in Mary’s Access 
cohort in Pre-calculus, regardless of each student’s history with mathematics. 

While Professor Turner made the decision to enroll Mary and the rest of her cohort in Pre-
calculus in order to enhance the legitimacy of Access students and the Access program, the decision 
initially had the opposite effect for Mary. This is because the nuance of such a decision cannot be 
captured on the flowchart, which enforces a standardized pathway through the curriculum. Professor 
Turner’s decision pushed students like Mary outside of the borders of this pathway, into into the 
margins of the flowchart. Mary explained: 

Almost all of the classes here for engineering are based off of calc, so if you’re not caught up in 
calc you’re gonna be behind in all of your other classes as well. And there’s like no getting 
around it. So that means I’m definitely way behind other people in the engineering school.  

One the one hand, such a position is expected for Access students. It’s a natural outcome of the 
“performance enhancing year” that is at the heart of the program, and of Professor Turner’s decision 
to enroll all Access students in Pre-calculus. From this perspective, Mary, who took Calculus I in the 
fall semester of her second year at State U, isn’t behind at all.  She’s exactly where the Access 
Program expects her to be. However, such a perspective fails to account for the lived experience of 
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students like Mary, who took what she calls “freshman classes” during her sophomore year. During 
an interview, her voice cracked as she described what this is like: 

[It’s] kind of embarrassing almost, cause you feel like you can be smarter than this, and like 
moving on, but you’re not. Yeah. I don’t know. I, it’s just, I don’t know... I don’t know (softly). I 
can’t- I don’t know how else to describe it. 

The margin of the flowchart is not a neutral space. In the margin, Mary questioned her legitimacy 
as an engineering student.  

This is not the only way that mathematics and its associated border-policing practices affected 
Mary’s sense of self. She describes herself as someone who tries to “think things through,” and 
“show all the steps.” For her, this is how to make learning “stick.” However, at State U, Mary 
experienced mathematics as an exercise in answer-getting under time pressure. In the segment below, 
she talks about doing slow, careful work in mathematics. 

Well, it’s not good if you want to actually get stuff done. [Last semester] I would just run out of 
time to do stuff, because I spent so much time like, going through… And it’s not a good thing for 
exams because that’s kind of like, you’ve got to know it, you’ve got to write it out really fast. 
And you’ve got to know all the stuff, you can’t just like stop to think for too long, otherwise you 
run out of time. 

As Mary describes, borders are important in testing. Tests are temporally and spatially bounded. 
Inscriptions that are produced outside of these borders are not allowed in. Hence, “you’ve got to 
write it out really fast,” because inscriptions made outside the temporal border aren’t mobilized into 
the grading room. If you “run out of time,” you bump up against the impermeable temporal border of 
the test. 

Mary “ran out of time” on her tests in Pre-calculus, and this turned out to be consequential. At 
the end of her first semester, her grade was below the binary cut-off and she therefore had to repeat 
the course the following semester. For Mary, mathematics was refusing to be naturalized, and this 
pushed her further into the margins of the flowchart. In large part, this was due to the way that 
mathematics was construed at in the engineering school at State U. Because the border-policing 
practices privileged answer-getting and speed over reasoning and thoughtfulness, her pensive style 
went unrecognized by the institution. 

Mary “passed” Pre-calculus after her second semester. Looking back, she describes Pre-calculus 
as “very important” for calculus. In large part, this is because exam problems made it important:  

[Pre-calculus] was very important. The first test was like over all things pre-calc basically. With a 
couple of calc things. […] They had a question on absolute value. And you learned like a lot 
about absolute value and translations and stuff [in pre-calc]. And you needed that information to 
solve a certain problem on the calc exam. 

Under these circumstances, Pre-calculus helped Mary to perform on the consequential knowledge 
displays (Stevens, O’Connor, Garrison, Jocuns, & Amos, 2008) that police the borders of the 
flowchart. As such, it helped propel Mary out of the margins of the flowchart and onto the standard 
pathway.  

But it is in the margins, after Mary failed her first semester of Pre-calculus, that something even 
more extraordinary happened. Because of her non-standard position as a student repeating Pre-
calculus, Mary was in a small class of students. In this environment, her instructor came to know 
Mary and her thoughtful style. This led the instructor to ask Mary to be a Learning Assistant (LA) for 
the Pre-calculus course in the following year.  LAs are undergraduates who help to facilitate small-
group interaction in large-enrollment courses. As an LA, Mary was positioned as an expert in 
mathematics. Students looked to her for help, this helped to affirm Mary’s legitimacy:  
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You feel like, kinda, proud of yourself and like, um, really happy that you got to help someone 
and like, make their life a little easier. Um, it’s just, yeah, a really good feeling. 

In addition to helping students, she worked with and socialized with Pre-calculus instructors, she 
helped to grade exams, and she conducted an independent education research project that she 
presented at a poster session on campus.  

In some ways, mathematics—and the boundary-policing practices that allow it to be 
institutionalized—pushed Mary into the margins of the engineering curriculum, causing Mary to 
question her identity as a member of the engineering community. This began with the Access 
program’s decision to enroll Mary in Pre-calculus—a decision that ensured that Mary would always 
be behind on the flowchart, but which, in retrospect, helped Mary gain legitimacy in calculus. It 
continues with the ongoing violence that timed tests inflict on Mary’s sense of self. At the same time, 
the margin became a space of possibility for Mary (hooks, 1989). In the margin of the flowchart, 
mathematics pulled Mary into a position of some power and authority within the engineering school, 
allowing her to build relationships and participate in practices that affirm her legitimacy in the 
community. 

Conclusion: The role of borders in the production of persons 
Foucault (1978) presented a radical new vision of power. While the received view was (and 

continues to be) that power was coercive, Foucault argued that, on the contrary, power was 
fundamentally productive. This was not an argument that power was benign, just that power 
produced people and society in particular ways. 

In this paper, we advanced a similar argument for the role of borders in mathematics education. 
We first documented how, in its trajectory of naturalization within engineering education, 
mathematics became intertwined with institutional borders. Next we illustrated how these borders 
(and their associated border-policing practices), are fundamentally productive objects that constantly 
work to produce students in particular and complex ways. To be sure, borders do violence to Mary. 
They create margins and produce suffering, as Mary questioned her legitimacy as an engineering 
student.  But at the same time, the very same margin became a place of possibility for Mary, and 
helped to produce her as a privileged member of the community. There is little doubt that Mary has 
been produced in complex ways by the borders associated with mathematics.  

Mary’s story is just one of the many we could have told about the complex ways that borders 
become productive in mathematics education. For many of the students that we have worked with, 
borders have produced both injury and possibility. For example, another student in the Access 
program, driven by fears that his marginality (due to mathematics) will lead to him getting “kicked 
out of the engineering school,” designed and patented a “high-end upgrade for 3-D printers,” which 
he is currently selling online. Another collection of Access students formed a student-led group to 
argue for more individuation in the Access program, largely in response to Professor Turner’s 
decision to enroll entire cohorts in Pre-calculus.  

We stress that when we argue that borders are productive, we are not arguing that borders are 
benign. Borders produce students in complex ways that cannot be encapsulated a priori using 
simplistic categorizes like “good” or “bad.” Instead, our argument is, to paraphrase Jean Lave (1993, 
p. 8): that borders are productive is not problematic. What gets produced is always complexly 
problematic. We argue, then, that more analytical attention should be focused on what gets produced 
by the borders in mathematics education.  
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